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Abstract

Knowledge Distillation (KD) is an effective technique for compressing large lan-
guage models through the teacher-student framework. Previous work in feature
distillation mainly applied an exact matching between the hidden representations of
the student and the teacher. However, as the student has a lower capacity compared
to the teacher, it may struggle to mimic its exact hidden representations. This
leads to a large discrepancy between their features as shown in preceding research.
Therefore, we propose intra-class similarity-guided feature distillation, a novel
approach to make the task easier for the student. In this work, we map each sample
representation by the student to its K nearest neighbor samples representations by
the teacher that are within the same class. This method is novel and can be com-
bined with other distillation techniques. Empirical results show the effectiveness of
our proposed approach by maintaining good performance on benchmark datasets.

1 Introduction

Knowledge distillation (KD) [Romero et al., 2014, Hinton et al., 2015] is known as an effective
technique to compress large language models (LLMs) [Sun et al., 2019, Sanh et al., 2019, Jiao et al.,
2020]. It is a framework to train a student network, the model with fewer parameters, to mimic the
behavior of a teacher network, the over-parameterized model, on a group of data points. There are
different approaches of knowledge distillation where the teacher is dynamic as in [Zhou et al., 2021,
Ma et al., 2022] or static as in [Jiao et al., 2020, Sun et al., 2019]. The knowledge embedded in
various components of the teacher can be distilled to the student. As examples, we can mention the
prediction layer [Sanh et al., 2019, Hinton et al., 2015], the attention matrices [Jiao et al., 2020, Wang
et al., 2021], and the hidden states [Sun et al., 2019, Saadi et al., 2023, Jiao et al., 2020]. In [Kovaleva
et al., 2019], it is shown that LLMs, e.g., BERT, suffer from over-parametrization in domain-specific
tasks. Thus, task-specific distillation has been an active research topic. In this work, we mainly focus
on task-specific feature distillation from a static teacher.

Existing methods in feature distillation tried to improve the loss function where MSE [Sun et al., 2019,
Jiao et al., 2020], cosine distance [Sanh et al., 2019], and correlation function [Saadi et al., 2023]
are used to match the hidden representations of the teacher and the student. However, previous work
mostly applied a one-to-one mapping between the student hidden representations and the teacher
hidden representations [Sun et al., 2019, Sanh et al., 2019] neglecting the capacity gap between them.
In fact, each sample representation by the student is mapped to the same exact sample representation
by the teacher. Nevertheless, as detailed in [Chen et al., 2022], in layer distillation, the student may
struggle to mimic the hidden representations of the teacher because of their large capacity difference.
This always results in huge discrepancies between their feature representations. Furthermore, as
shown in [Liang et al., 2023], training a student to achieve discriminative feature extraction for the
main classification task and exact feature matching for distillation at the same time, is considered a
multi-task learning. It is also shown that, in this case, it tends to over-fit the teacher’s hidden states
representations.
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Figure 1: Left: Typical feature distillation. Right: Our proposed approach. For simplicity, we
set K = 1. The arrows represents the loss per sample. Red shapes represent the teacher samples
representations. Yellow shapes represent the student samples representations. The same samples are
marked with the same shapes. The samples in the figure are from the same class

Motivated by this, we propose intra-class similarity-guided feature distillation, a novel approach
where we introduce a new mapping between the student and teacher hidden representations. In
fact, we match each student’s sample representation with its K nearest neighbor teacher’s samples
representations which are within the same class. This new mapping will reduce the difficulty of the
distillation task for the student model. Furthermore, we can look at our new mapping as a relaxation
for the feature distillation task, so the student will not overfit the teacher features as detailed in [Liang
et al., 2023]. Instead, it will focus better on the main feature extraction task while utilizing the teacher
features as guidance.

In Figure 1, we illustrate the key idea of our approach using a simple example. In the left side, we
present the typical features matching approach where each student sample representation is mapped
to its exact sample representation by the teacher . In the right side, we present our new proposed
approach where the mapping is done between each student sample representation and its nearest
sample representation, from the same class, by the teacher. In the existing approach (Right), as
sometimes the student’s sample representation is very far from the teacher same sample representation,
it is hard for the student to match it with its lower capacity, unlike in our proposed approach (Left)
where we try to minimize the shortest distances taking advantages of the intra-class similarities.

In this work, we distill the last hidden representation of the teacher to the student as in [Tian et al.,
2019, Yang et al., 2020] where we try to group together the samples representations of the same
class, revealing the intra-class similarities. Mainly, because it is the closest to the classifier and
will immediately affect the classification performance [Yang et al., 2020]. We also assume that the
teacher’s last hidden state and the student’s last hidden state have the same dimension.

2 Methodology

Different from previous feature distillation work which applies a sample-wise representation align-
ment, we propose a KNN-based feature KD, a novel feature distillation method where the alignment
is done between each sample representation by the student and its K nearest neighbors representations
by the teacher which are from the same class . Our approach makes the task easier for the student.
Moreover, As illustrated in Figure 2, the average intra-class similarity across the 4 GLUE benchmark
datasets is higher with our method compared to the typical layer distillation technique. This high-
lighting the effect of our approach in learning more compact class-embedding. To empirically verify
this hypothesis, we compute the intra-class cosine similarity MICS as following:

MICS =
1

N

N∑
i=1

ci∑
j=1

< si · sj >
ci∥si|| 2∥sj || 2
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Figure 2: Intra-Class Similarity: Our approach VS typical feature distillation

N is the batch-size, sj is the j-th sample belonging to the same class of si, and ci is the total number
of sj in the batch of size N .

Typically, in a KD framework, we have the over-parameterized knowledgeable teacher modeled
by fθ. The efficient student network is modeled by gθ′ which has a lower number of parameters
compared to the teacher |θ′ | << |θ|. An input batch X is fed to fθ and gθ′ simultaneously to produce
the last hidden representations Yt and Ys, respectively. Usually, to perform the feature distillation
task, an MSE is computed between Yt and Ys [Sun et al., 2019, Jiao et al., 2020]. In fact, each
sample representation in Ys is mapped to its representation in Yt. In this work, we propose a novel
mapping approach to reduce the difficulty of the task for the student. We propose to map each sample
representation in Ys to its K nearest neighbors, that have the same label, in Yt. In details, given a
sample x in the input batch X where the batch X contains N samples. Its student representation rS

is with dimension n. rS = gθ′ (x). F = {s | s ∈ X, and label(x) = label(s)} contains the elements
in the batch with the same label as x. G = {d | d =

∑n
j=1

(
fθ(s)j − rSj

)2
, and s ∈ F} contains

the distances between each sample s in F and x. GK = {i1, i2, i3, ..., iK | di1 < di2 < di3 ... <
diK , and K < N} contains the indices of the K nearest points to x. The feature KD loss per sample
is:

lhidd(x) =
1

n

∑
k∈GK

n∑
j=1

(fθ(sk)j − gθ′ (x)j)
2

The final feature KD loss over all the batch samples is computed as following:

Lhidd =
∑
x∈X

lhidd(x)

The final KD loss is computed as following:

LKD = α1Lhidd + α2Lsoft

The final training loss of the student is computed as following:

L = LKD + α3LCE

α1, α2, and α3 are the contributions of the 3 loss components to the final training loss. Lsoft is the
logit distillation loss as in [Sanh et al., 2019, Jiao et al., 2020], which is the temperated KL divergence
between the student logits and the teacher logits. LCE is the cross entropy loss between the ground
truth labels and the student predictions.
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3 Experimental Results

3.1 Experimental Setup

Datasets In this work, we evaluate our proposed method on the validation set of 7 GLUE benchmark
datasets [Wang et al., 2018]. The GLUE dataset is the typical benchmark for Knowledge distillation
in NLP [Zhou et al., 2021]. It is composed of several datasets for different tasks. In our evaluation, we
use MNLI, QNLI, and RTE for natural language inference; SST-2 is used for sentiment classification;
QQP, MRPC, and STS-B are used for paraphrase similarity matching. The reported results are in the
same format as on the official GLUE leader board.

Baselines In this work, the teacher is a 12-layer BERT-base-uncased model, fine-tuned on each GLUE
task, with 110M parameters distilled into a 6-layer BERT6 student model with 66M parameters.
The number of epochs, the sequence length, the batch size, the learning rate are set to 5, 128, 32,
and {1e − 5, 3e − 5, 5e − 5}, respectively for the teacher fine tuning. We compare our proposed
method with different state-of-the-art BERT compression approaches, including DistilBERT [Sanh
et al., 2019], BERT-PKD [Sun et al., 2019], PD[Turc et al., 2019], TinyBERT [Jiao et al., 2020],
BERT-of-Theseus [Xu et al., 2020], MetaDistil [Zhou et al., 2021], MiniLM v2 [Wang et al., 2021],
and ReptileDistil [Ma et al., 2022]

Training settings For the baseline methods we report the same results in [Ma et al., 2022], which are
from the corresponding original paper. In our work, following [Ma et al., 2022, Jiao et al., 2020],
we initialize the student with the general TinyBERT6 model weights. Similar to [Ma et al., 2022],
the sequence length, the batch size, the number of epochs, and the temperature are set to 128, 32,
5, and 5, respectively. Similar to [Sanh et al., 2019, Jiao et al., 2020], α2 and α3 are set to 0.5 and
0.5, respectively. Following [Sun et al., 2019, Zhou et al., 2021, Ma et al., 2022], we conduct a grid
search over student learning rate from {1e− 5, 3e− 5, 5e− 5}, the K (number of nearest neighbors)
from {1, 2, 3, 5}, and α1 from {0.1, 0.01, 0.001} and save the best model. All the experiments are
repeated for 4 random seeds as in [Sun et al., 2019] and the average is reported.

3.2 Results

In this section, we discuss the experimental results of our approach.

SST-2 MRPC STS-B QQP MNLI QNLI RTE
Method (67k) (3.7k) (5.7k) (364k) (393k) (105k) (2.5k)

Acc F1/Acc Pear/Spea F1/Acc Acc m/mm Acc Acc

BERTBASE [Devlin et al., 2019] 93.0 91.6/87.6 90.2/89.8 88.5/91.4 84.6/84.9 91.2 71.4

DistilBERT [Sanh et al., 2019] 91.3 87.5/- -/86.9 -/88.5 82.2/- 89.2 59.9
BERT-PKD [Sun et al., 2019] 91.3 85.7/- -/86.2 -/88.4 81.3/- 88.4 66.5
PD [Turc et al., 2019] 91.1 89.4/84.9 - 87.4/90.7 82.5/83.4 89.4 66.7
TinyBERT [Jiao et al., 2020] 93.0 90.6/86.3 90.1/89.6 88.0/91.1 84.5/84.5 91.1 73.4
BERT-of-Theseus [Xu et al., 2020] 91.5 89.0/- -/88.7 -/89.6 82.3/- 89.5 68.2
MiniLM v2 [Wang et al., 2021] 92.4 88.9/- - -/91.1 84.2/- 90.8 69.4
MetaDistil [Zhou et al., 2021] 92.3 91.1/86.8 89.4/89.1 88.1/91.0 83.5/83.8 90.4 72.1
ReptileDistil [Ma et al., 2022] 92.2 91.6/87.7 89.5/89.3 87.6/90.1 83.7/83.7 90.5 75.3
Ours 92.5 92.5/89.64 89.7/89.5 87.7/90.9 84.5/84.5 90.8 75.8

Table 1: Experimental results on the development set of GLUE. The numbers and the strings under
each dataset name indicated the number of samples and the metrics.

As shown in Table 1, our proposed approach outperforms all the state-of-the-art methods on three
datasets i.e., MRPC, MNLI, and RTE. While we distill the knowledge from a static teacher, ours
outperforms both KD state-of-the-art MetaDistil and ReptileDistil, where the teacher is dynamic, on
most of the datasets. While we distill the knowledge only from the last hidden representation of the
teacher, ours outperforms BERT-PKD on all the datasets, which distills several hidden representations
from the teacher to the student. It is also worth mentioning that, although in [Wang et al., 2023],
the authors showed that the attention distillation is the best performing objective, ours outperforms
MiniLM v2, which distills the attention, on all the datasets and TinyBERT, which distills the attention,
all the hidden states, and the logits, on 3 datastets.
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4 Conclusion

In this paper, we introduced a new mapping between the hidden representations of the teacher and
the student. In fact, each sample representation by the student is mapped to its K nearest neighbors
representations by the teacher. Our approach makes the task easier for the student and helps it to learn
more compact samples representations. Empirical results showed the effectiveness of our proposed
method. Future work will include exploring adding a projector to dispose of the requirement that the
student and the teacher must have the same last hidden states dimension.
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